- Bạn vui lòng tham khảo Thỏa Thuận Sử Dụng của Thư Viện Số
Tài liệu Thư viện số
Danh mục TaiLieu.VN
Bài giảng Giải tích 2: Đạo hàm riêng - Tăng Lâm Tường Vinh
Bài giảng Giải tích 2: Đạo hàm riêng, cung cấp cho người học những kiến thức như đạo hàm riêng cấp 1; Đạo hàm riêng cấp 2; Ý nghĩa đạo hàm; Bài toán thực tế. Mời các bạn cùng tham khảo!
15 p ctuet 19/08/2024 13 0
Từ khóa: Bài giảng Giải tích 2, Giải tích 2, Đạo hàm riêng, Bài tập đạo hàm, Hệ số góc tiếp tuyến
Ebook Bài tập Phương pháp toán lí: Phần 1
Cuốn sách "Bài tập Phương pháp toán lí" Phần 1 được biên soạn gồm các nội dung chính sau: giải tích vectơ trong hệ tọa độ cong; Tenxo và giải tích tenxo; lí thuyết hàm biến phức; tích phân và chuỗi hàm biến phức. Mời các bạn cùng tham khảo!
115 p ctuet 27/12/2023 55 0
Từ khóa: Bài tập Phương pháp toán lí, Phương pháp toán lí, Hệ tọa độ Descartes vuông góc, Hàm số biến phức, Đạo hàm của hàm biến phức, Tích phân hàm biến phức, Chuỗi hàm biến phức
Phần 1 cuốn giáo trình "Giải tích - Giáo trình lý thuyết và bài tập có hướng dẫn(Tập 1)" trình bày lý thuyết và bài tập các chương: Tập hợp số thực, giới hạn, đạo hàm, tích phân. Đây là một tài liệu hữu ích dành cho các bạn sinh viên dùng làm tài liệu học tập và nghiên cứu.
191 p ctuet 28/02/2018 525 1
Từ khóa: Giáo trình Giải tích, Giáo trình lý thuyết giải tích, Giáo trình bài tập giải tích, Tập hợp số thực, Lý thuyết giới hạn, Lý thuyết đạo hàm
Phần 1 giáo trình "Giải tích - Giáo trình lý thuyết và bài tập có hướng dẫn (Tập 2)" trình bày các nội dung: Ứng dụng hình học của đạo hàm, chuỗi số, dãy hàm số và chuỗi hàm số, tích phân suy rộng tích phân phụ thuộc tham số. Đây là một tài liệu hữu ích dành cho các bạn sinh viên dùng làm tài liệu học tập và nghiên cứu.
197 p ctuet 28/02/2018 589 2
Từ khóa: Giáo trình Giải tích, Giáo trình lý thuyết giải tích, Giáo trình bài tập giải tích, Ứng dụng hình học đạo hàm, Dãy hàm số, Chuỗi hàm số
Tập biến phân tiệm cận cấp hai và ứng dụng
Trong bài báo này, kết hợp giữa khái niệm tập biến phân và khái niệm đạo hàm tiệm cận xây dựng từ nón tiệm cận, tác giả đưa ra khái niệm mới là khái niệm tập biến phân tiệm cận, khảo sát một số phép toán của chúng và ứng dụng tập biến phân tiệm cận này để xét điều kiện tối ưu của bài toán tối ưu đa trị.
8 p ctuet 20/06/2016 351 1
Từ khóa: Tập biến phân, Đạo hàm tiệm cận cấp hai, Tập biến phân tiệm cận cấp hai, Bài toán tối ưu đa trị, Điều kiện tối ưu cấp hai
Đăng nhập